Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Nakai, H., Takasuka, M. \& Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459-1464.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Patel, U., Haridas, M. \& Singh, T. P. (1988). Acta Cryst. C44, 1264 1267.

Rambaud, J., Maury, L., Pauvert, B., Audran, M., Lasserre, Y., Berge, G. \& Declercq, J. P. (1985). Acta Cryst. C41, 133-134.

Singh, C. (1965). Acta Cryst. 19, 861-864.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1997). C53, 1299-1301

Isoalangidiol Monoacetate, a Triterpene Alcohol

Kinkini Bhattacharyya, ${ }^{a}$ Siddhartha Chaudhuri, ${ }^{b}$ Basudeb Achari, ${ }^{c}$ Biswanath Mazumdar ${ }^{d}$ and Sunil Kumar Mazumdar ${ }^{a}$
${ }^{a}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, ${ }^{b}$ RSIC, Bose Institute, Calcutta 700 009, India, ${ }^{\text {c }}$ Indian Institute of Chemical Biology, Jadavpur, Calcutta 700 032, India, and ${ }^{\text {d Silchar Polytechnic, Silchar, Assam, India. }}$ E-mail: msskm@iacs.ernet.in

(Received 27 March 1996; accepted 11 November 1996)

Abstract

Isoalangidiol ($3 \alpha, 18 \alpha-B^{\prime}: A^{\prime}$-neogammacerane-3,18-diol) has been extracted as a natural product from the leaves of Alangium lamarckii Thw. (Alangiaceae). The crystal structure study of its monoacetate, $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{3}$, was undertaken in order to ascertain the conformation of the compound. The four six-membered rings are in chair conformations. The five-membered ring is distorted from a plane and is twisted, with a C19-C18-C17-C21 torsion angle of $-43.0(4)^{\circ}$. The molecular parameters of the compound are all within normal limits.

Comment

Isoalangidiol has been obtained from the petroleum ether extract of Alangium lamarckii Thw. (Alangiaceae) and purified as its monoacetate, (I), prepared by heating with acetic anhydride/pyridine at 373 K , by column chromatography over silica gel (Pakrashi \& Achari,
1971). The structural elucidation via NMR spectra has already been carried out (Achari, Pal \& Pakrashi, 1975). The present X-ray structure study was carried out in order to confirm these findings. Isoalangidiol is the 3α-epimer of $18 \alpha-B^{\prime}: A^{\prime}$-neogammacerane- 3,18 -diol. It represents the first example of a naturally occurring $D: E-$ cis neohopane derivative and belongs to the rare group of pentacyclic triterpenes with a free hydroxyl group at the ring juncture.

(I)

The title compound consists of four trans-fused sixmembered alicyclic rings (A, B, C and D) and a fivemembered ring E cis-fused to ring D. Rings A, B, C and D are in chair conformations, as shown by the ring-puckering parameters given in Table 2 (Cremer \& Pople, 1975). The acetoxy function, adjacent to a methylene group, is axial. There are altogether eight methyl groups in the structure. The isopropyl group is attached to ring E. The hydroxy group is attached to C18 in this neohopane derivative. The five-membered ring has a twisted conformation, with a C19-C18-C17-C21 torsion angle of $-43.0(4)^{\circ}$.

There is an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the O 18 and O 32 atoms, joining the molecules into infinite chains along the z axis [O18‥O32 ${ }^{i}$ 2.961 (5) \AA and $\mathrm{O} 18-\mathrm{H} 18 \cdots \mathrm{O}_{2}{ }^{i} 124.1$ (4) ${ }^{\circ}$; symmetry code: (i) $-x-\frac{1}{2},-y, z-\frac{1}{2}$].

Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

Isoalangidiol monoacetate, (I), was crystallized from a solution of benzene and ethanol.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{3} & \text { Mo } K \alpha \text { radiation } \\
M_{r}=486.75 & \lambda=0.71073 \AA
\end{array}
$$

Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=12.201$ (2) \AA
$b=12.8625(14) \AA$
$c=18.571(2) \AA$
$V=2914.4(7) \AA^{3}$
$Z=4$
$D_{x}=1.109 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer $\omega-2 \theta$ scans
Absorption correction: none
2315 measured reflections 2315 independent reflections 1853 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.0525$
$w R\left(F^{2}\right)=0.1575$
$S=0.981$
2309 reflections
315 parameters
All H atoms refined
$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1018 P)^{2}\right. \\ & \quad+0.5002 P] \\ & \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\max }=0.063$
$\Delta \rho_{\max }=0.219 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.206 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute configuration: Flack (1983)
Flack parameter $=0(3)$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cl}-\mathrm{Cl} 0$	1.540 (6)	C14-C15	1.546 (5)
C3-O31	1.465 (5)	C16-C17	1.537 (6)
C3--C4	1.535 (7)	C17-C28	1.527 (6)
C4-C24	1.524 (7)	C17-C21	1.562 (6)
C4-C5	1.562 (6)	C17-C18	1.571 (6)
C4-C23	1.564 (8)	C18-O18	1.428 (5)
C5-C10	1.551 (6)	C18-C19	1.536 (6)
C7-C8	1.535 (6)	C19-C20)	1.521 (7)
C8-C26	1.550 (5)	C20-C21	1.542 (6)
C8-C9	1.569 (5)	C21-C22	1.543 (6)
C8-C14	1.594 (5)	C22-C30	1.510 (6)
C9-C10	1.572 (6)	C22-C29	1.525 (6)
$\mathrm{C} 10-\mathrm{C} 25$	1.552 (6)	O31-C32	1.328 (6)
C13-C18	1.539 (6)	C32-O32	1.202 (6)
C13-C14	1.562 (5)	C32-C33	1.507 (7)
$\mathrm{C14}-\mathrm{C} 27$	1.544 (5)		
O31-C3-C2	108.5 (4)	C16-C17-C21	116.0)(3)
$\mathrm{O} 31-\mathrm{C} 3-\mathrm{C} 4$	107.5 (4)	C28-C17-C18	110.2 (4)
C2-C3-C4	113.9 (4)	C16-C17-C18	109.5 (3)
C24-C4-C5	115.3 (4)	C21-C17-C18	101.6 (3)
C3-C4-C5	109.2 (4)	O18-C18-C13	107.3 (3)
C24-C4-C23	107.5 (4)	O18-C18-C19	112.0 (3)
C3-C4-C23	108.1 (4)	C13-C18-C19	110.2 (3)
C7-C8-C26	107.3 (3)	O18-C18-C17	112.5 (3)
C7-C8-C9	108.6 (3)	C13-C18-C17	112.6 (3)
C26-C8-C9	111.6 (3)	C19-C18-C17	102.2 (3)
C26-C8-C14	109.9 (3)	C20-C19-C18	105.9 (4)
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 25$	107.8 (3)	C19-C20-C21	107.7 (4)
$\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{C} 5$	107.2 (3)	C22-C21-C20	111.9 (4)
C25-C10-C5	115.0 (4)	C22-C21-C17	118.8 (4)
C25-C10-C9	112.7 (4)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 17$	104.0 (3)
C5-C10-C9	106.1 (3)	$\mathrm{C} 30-\mathrm{C} 22-\mathrm{C} 29$	108.5 (3)
C27-C14-C15	106.2 (3)	$\mathrm{C} 30-\mathrm{C} 22-\mathrm{C} 21$	115.0 (4)
C27-C14-C13	110.8 (3)	C29-C22-C21	109.8 (4)
$\mathrm{C} 15-\mathrm{Cl} 4-\mathrm{C} 13$	108.8 (3)	C32-O31-C3	117.2 (4)

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pakrashi, S. C. \& Achari, B. (1971). Tetrahedron Lett. 4, 365-368. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1301-1302

The 4:2 Diels-Alder Adduct of 1,3-Cyclopentadiene with 1,4-Naphthoquinone

Blal Güneş, ${ }^{a}$ Hüseyin Soylu, ${ }^{a}$ Süheyla Özbey, ${ }^{b}$ Engin Kendi ${ }^{b}$ and Ali Aydin ${ }^{c}$
${ }^{a}$ Physics Department, Gazi Education Faculty, Gazi University, 06500 Besevler, Ankara, Turkey, ${ }^{\text {b }}$ Physics Engineering Department, Engineering Faculty, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and 'Chemistry Department, Gazi Education Faculty, Gazi University, 06500 Besevler, Ankara, Turkey. E-mail: bgunes@cc.gazi.edu.tr

(Received 4 July 1996; accepted 17 April 1997)

Abstract

The title compound, 1,4-methano-1,4,4a,9a-tetrahydro-anthracene-9, 10 -dione, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$, is a Diels-Alder adduct resulting from a [4+2] cycloaddition of $1,3-$ cyclopentadiene with p-naphthoquinone.

Comment

The structure analysis of the title compound is part of an ongoing program of obtaining cage compounds by photochemical [2+2] cycloaddition (Maruyama, Terada \& Yamamoto, 1981; Kaftory \& Weisz, 1984). One aim is to obtain the norbornediene derivatives from the title compound (Diels \& Alder, 1929). The present structural analysis has been carried out in order to establish more details of the molecular geometry of the title compound, (I), thus providing a basis of comparison for our further studies.

The unit cell contains two independent molecules, related by a pseudo- c glide perpendicular to the a axis, in the asymmetric unit, the average deviation from c glide symmetry being 0.02 (2) Å between the two molecules. The C and O atoms of each dihydronaphthoquinone ring are coplanar (Pizzotti, Cenini, Ugo \&

Demartin, 1991). The r.m.s. deviations of fitted atoms for these planes are 0.025 and $0.057 \AA$, the maximum deviations from these planes are 0.04 (3) \AA for C6 and 0.164 (3) \AA for $\mathrm{Cl} A$. The two five-membered rings adopt envelope conformations with C 15 and C 15 A at the flaps. The dihedral angles between the envelope planes through C11-C14 and C11A-C14A, respectively, and the dihydronaphthoquinone moieties are 55.5 (1) and 49.7 (2) ${ }^{\circ}$ for each independent molecule. The dihedral angle is $29.8(2)^{\circ}$ between the two envelope planes and $57.7(1)^{\circ}$ between the two dihydronaphthoquinone moieties in the asymmetric unit.

The bond lengths and angles are quite normal and comparable with corresponding values observed in related molecules (Kerr, 1987; Beddoes, Gorman \& McNeeney, 1993).

Fig. 1. A perspective view of the molecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Experimental

p-Naphthoquinone ($31.63 \mathrm{~g}, 0.20 \mathrm{~mol}$) was suspended in benzene (100 ml). A cyclopentadiene ($13.88 \mathrm{~g}, 0.21 \mathrm{~mol}$) solution in cooled benzene (20 ml) was added to the above suspension. After keeping the mixture overnight, the resulting colourless solid was separated and recrystallized from ethanol.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=224.25$
Triclinic
$P \overline{1}$
$a=9.4077(12) \AA$
$b=10.1752(10) \AA$
$c=12.5542(13) \AA$
$\alpha=71.698(9)^{\circ}$
$\beta=86.980(9)^{\circ}$
$\gamma=77.019(10)^{\circ}$
$V=1111.6(2) \AA^{3}$
$Z=4$
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

